10th Maths - Book Back Answers - Chapter 2 Excercise 2.9 - English Medium Guides

 


    SSLC / 10th - Maths - Book Back Answers - Chapter 2 Excercise 2.9 - English Medium

    Tamil Nadu Board 10th Standard Maths - Chapter 2 Excercise 2.9: Book Back Answers and Solutions

        This post covers the book back answers and solutions for Chapter 2 Excercise 2.9 – Maths from the Tamil Nadu State Board 10th Standard Maths textbook. These detailed answers have been carefully prepared by our expert teachers at KalviTips.com.

        We have explained each answer in a simple, easy-to-understand format, highlighting important points step by step under the relevant subtopics. Students are advised to read and memorize these subtopics thoroughly. Once you understand the main concepts, you’ll be able to connect other related points with real-life examples and confidently present them in your tests and exams.

        By going through this material, you’ll gain a strong understanding of Chapter 2 Excercise 2.9 along with the corresponding book back questions and answers (PDF format).

    Question Types Covered:

    • 1 Mark Questions: Choose the correct answer, Fill in the blanks, Identify the correct statement, Match the following 
    • 2 Mark Questions: Answer briefly 
    • 3, 4, and 5 Mark Questions: Answer in detail

    All answers are presented in a clear and student-friendly manner, focusing on key points to help you score full marks.

    All the best, Class 10 students! Prepare well and aim for top scores. Thank you!

    Chapter 2 Numbers and Sequences Ex 2.9

    1. Find the sum of the following series
    (i) 1 + 2 + 3 + …….. + 60
    (ii) 3 + 6 + 9 + …….. +96
    (iii) 51 + 52 + 53 + …….. + 92
    (iv) 1 + 4 + 9 + 16 + …….. + 225
    (v) 62 + 72 + 82 + …….. + 212
    (vi) 103 + 113 + 123 + …….. + 203
    (vii) 1 + 3 + 5 + …… + 71
    Answer key:

    (i) 1 + 2 + 3 + …….. + 60 =60×612
    [Using
    n(n+1)2formula]
    = 1830
     
    (ii) 3 + 6 + 9 + …….. + 96 = 3(1 + 2 + 3 + ……… + 32)
    =3×32×332

    = 1584
     
    (iii) 51 + 52 + 53 + …….. + 92 = (1 + 2 + 3 + ……. + 92) – (1 + 2 + 3 + …… + 50)
    [92×932]-[50×512]
    = 4278 – 1275
    = 3003
     
    (iv) 1 + 4 + 9 + 16 + …….. + 225 = 12 + 22 + 32 + 42 + ………… + 152
    15×16×316
    [using
    n(n+1)(2n+1)6] formula
    = 1240
     
    (v) 62 + 72 + 82 + …….. + 212 = 1 + 22 + 32 + 42 + ………… + 212 – (1 + 22 + ………… + 52)
    =21×22×436-5×6×116
    = 3311 – 55
    = 3256
     
    (vi) 103 = 113 + 123 + …….. + 203 = 13 + 23+ 33 + ………… + 203 – (13 + 23 + 33 + …………. + 93)
    [20×212]2-[9×102]
    [Using (n(n+1)2)2 formula]
    = 2102 – 452 = 44100 – 2025
    = 42075
     
    (vii) 1 + 3 + 5+ … + 71
    Here a = 1; d = 3 – 1 = 2; l = 71
    n=l-ad+1 
    n=71-12+1=35+1=36
    1+3+5+......+71=(36)2=1296
    1+3+5+......+71= [71+12]
    Using (n(n+1)2)2
    =1296 [Using1+3+5+......+71=(number of terms)2]
      
    2. If 1 + 2 + 3 + …. + k = 325 , then find 13 + 23 + 33 + …………. + k3
    Answer key:

    1 + 2 + 3 + …. + k = 325
    k(k+1)2= 325 ……(1)
    1 + 2 + 3 + …. + k3=[k(k+1)2]2
    = 3252 (From 1)
    = 105625
     
    3. If 13 + 23 + 33 + ………… + K3 = 44100 then find 1 + 2 + 3 + ……. + k
    Answer key:

    13 + 23 + 33 + ………….. + k3 = 44100
    [k(k+1)2]2= 44100
    k(k+1)2 = 44100= 210
    1 + 2 + 3 + …… + k =k(k+1)2 
    = 210
     
    4. How many terms of the series 13 + 23 + 33 + …………… should be taken to get the sum 14400?
    Answer key:

    13 + 23 + 33 + ……. + n3 = 14400
    [n(n+1)2]2= 14400
    n(n+1)2  = 14400
    n(n+1)2 = 120 n2 + n = 240
     n2 + n – 240 = 0
    (n + 16) (n – 15) = 0
    (n + 16) = 0 or (n – 15) = 0
    n = -16 or n = 15 (Negative will be omitted)
    The number of terms taken is 15
     
    5. The sum of the squares of the first n natural numbers is 285, while the sum of their cubes is 2025. Find the value of n.
    Answer key:

    12 + 22 + 32 + …. + n2 = 285
    n(n+1)(2n+1)6=285....(1) 
    13+23+33+......+n3=2025
    [n(n+1)2]2=2025 
    n(n+1)2=2025n(n+1)2=45
    substitute the value ofn(n+1)2in(1)
    45(2n+1)3=285
    (2n+1)=285×345=28515=19
    2n+1=192n=19-1=18
    n=182=9n=9 
     
    6. Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm, …, 24 cm. How much area can be decorated with these colour papers?
    Answer key:

    Area of 15 square colour papers
    = 102 + 112 + 122 + …. + 242
    = (12 + 22 + 32 + …. + 242) – (12 + 22 + 92)
    =24×25×496-9×10×196

    = 4 × 25 × 49 – 3 × 5 × 19
    = 4900 – 285
    = 4615
    Area can be decorated is 4615 cm2
     
    7. Find the sum of the series (23 – 1)+(43 – 33) + (63 – 153) + …….. to
    (i) n terms
    (ii) 8 terms
    Answer key:

    Sum of the series = (23 – 1) + (43 – 33) + (63 – 153) + …. n terms
    = 23 + 43 + 63 + …. n terms – (13 + 33 + 53 + …. n terms) …….(1)
    23 + 43 + 63 + …. n = ∑(23 + 43 + 63 + ….(2n)3]
    ∑ 23 (13 + 23 + 33 + …. n3)
    =8(n(n+1)2)2
    = 2[n (n + 1)]2
    13 + 33 + 53 + ……….(2n – 1)3 [sum of first 2n cubes – sum of first n even cubes]
    [2n(2n+1)2]2-8[n(n+1)2]2
    4n2(2n+1)24-8[n2(n+1)]24
    n2(2n+1)2-2n2(n+1)2 
    Substituting (2) and (3) in (1)
    Sum of the series = 2n2 (n + 1)2 – n2 (2n + 1)2 + 2n2(n + 1)2
    = 4n2 (n + 1)2 – n2 (2n + 1)2
    = n2 [(4(n + 1)2 – (2n + 1)2]
    = n2 [4n2 + 4 + 8n – 4n2 – 1 – 4n]
    = n2 [4n + 3]
    = 4n3 + 3n2
     
    (ii) when n = 8 = 4(8)3 + 3(8)2
    = 4(512) + 3(64)
    = 2240
    [2n(2n+1)2]2

     









    0 Comments:

    Post a Comment

    Recent Posts

    Total Pageviews

    Code

    Blog Archive