Tamil Nadu Board 10th Standard Maths - Chapter 1 Exercise 1.5 : Book Back Answers and Solutions
This post covers the book back answers and solutions for Chapter 1 Exercise 1.5 – Maths from the Tamil Nadu State Board 10th Standard Maths textbook. These detailed answers have been carefully prepared by our expert teachers at KalviTips.com.
We have explained each answer in a simple, easy-to-understand format, highlighting important points step by step under the relevant subtopics. Students are advised to read and memorize these subtopics thoroughly. Once you understand the main concepts, you’ll be able to connect other related points with real-life examples and confidently present them in your tests and exams.
By going through this material, you’ll gain a strong understanding of Chapter 1 Exercise 1.5 along with the corresponding book back questions and answers (PDF format).
Question Types Covered:
- 1 Mark Questions: Choose the correct answer, Fill in the blanks, Identify the correct statement, Match the following
- 2 Mark Questions: Answer briefly
- 3, 4, and 5 Mark Questions: Answer in detail
All answers are presented in a clear and student-friendly manner, focusing on key points to help you score full marks.
All the best, Class 10 students! Prepare well and aim for top scores. Thank you!
Chapter 1 Relations and functions Ex 1.5
1. Using the functions f and g given below, find fog and gof Check whether fog = gof.
f(x) = x – 6, g(x) = x2
fog = fog (x)
= f(g(x))
= x2 – 6
gof = go f(x)
= g(x – 6)
= (x – 6)2
= x2 – 12x + 36
fog ≠ gof
f(x) – ; g(x) = 2x2 – 1
fag = f[g (x)]
= f(2x2 – 1)
gof = g [f(x)]
= 2 ()2 – 1
=2×−1
=−1
fog ≠ gof
f(x) =, g(x) = 3 – x
fog = f[g(x)]
= f(3 – x)
f(x) = 3 + x; g(x) = x – 4
fog = f[g(x)]
= f(x – 4)
= 3 + x – 4
= x – 1
gof = g[f(x)]
= g(3 + x)
= 3 + x – 4
= x – 1
fog = gof
f(x) = 4x2 – 1; g(x) = 1 + x
fog = f[g(x)]
= 4(1 + x)
= 4(1 + x)2 – 1
= 4[1 + x2 + 2x] – 1
= 4 + 4x2 + 8x – 1
= 4x2 + 8x + 3
gof = g [f(x)]
= g (4x2 – 1)
= 1 + 4x2 – 1
= 4x2
fog ≠ gof
(i) f(x) = 3x + 2, g(x) = 6x – k
(ii) f(x) = 2x – k, g(x) = 4x + 5
fog(x) = f(g(x)) = f(6x – k) = 3(6x – k) + 2
= 18x – 3k + 2 …………… (1)
gof(x) = g(f(x)) = g(3x + 2) = 6(3x + 2) – k
= 18x + 12 – k ……………. (2)
(1) = (2)
⇒ 18x – 3k + 2 = 18x + 12 – k
2k = -10
k = -5
fog(x) = f(g(x)) = f(4x + 5) = 2(4x + 5) – k
= 8x + 10 – k ……………… (1)
gof(x) = g(f(x)) = g(2x – k) = 4(2x – k) + 5
= 8x – 4k + 5 ……………. (2)
(1) = (2)
⇒ 8x + 10 – k = 8x – 4k + 5
3k = -5
k =
f(x) = 2x – 1 ; g(x) =
Answer Key:
f(x) = x2 – 1, g(x) = x – 2
Given gof(a) = 1
gof(x) = g(f(x)
= g(x2 – 1) = x2 – 1 – 2
= x2 – 3
gof(a) ⇒ a2 – 3 = 1 =+ a2 = 4
a = ± 2
Answer Key:
f(x) = 2x + 1; g(x) = x2
fog = f[g(x)]
= f(x2)
= 2x2 + 1
2x2 + 1 ∈ N
g o f = g [f(x)]
= g (2x + 1)
g o f = (2x + 1)2
(2x + 1)2 ∈ N
Range = {y/y = 2x2 + 1, x ∈ N};
{y/y = (2x + 1)2, x ∈ N)
Answer Key:
(i) fof
fof(x) = f(fx)) = f(x2 – 1)
= (x2 – 1 )2 – 1;
= x4 – 2x2 + 1 – 1
= x4 – 2x2
= f o f (x4 – 2x2)
= f(f(x4 – 2x2))
= (x4 – 2x2)2 – 1
= x8 – 4x6 + 4x4 – 1
Answer key:
f(x) = x5 – It is one – one function
g(x) = x4 – It is one – one function
fog = f[g(x)]
= f(x4)
= (x4)5
fag = x20
It is also one-one function.
(i) f(x) = x – 1, g(x) = 3x + 1 and h(x) = x2
(ii) f(x) = x2, g(x) = 2x and h(x) = x + 4
(iii) f(x) = x – 4, g(x) = x2 and h(x) = 3x – 5
Answer key:
(i) f(x) = x – 1, g(x) = 3x + 1 and h(x) = x2
f(x) = x – 1
g(x) = 3x + 1
f(x) = x2
(fog)oh = fo(goh)
LHS = (fog)oh
fog = f(g(x)) = f(3x + 1) = 3x + 1 – 1 = 3x
(fog)oh = (fog)(h(x)) = (fog)(x2 ) = 32 ……………. (1)
RHS = fo(goh)
goh = g(h(x)) = g(x2) = 3x2 + 1
fo(goh) = f(3x2 + 1) = 3x2 + 1 – 1= 3x2 ………… (2)
LHS = RHS Hence it is verified.
(fog)oh = fo(goh)
LHS = (fog)oh
fog = f(g(x)) = f(2x) = (2x)2 = 4x2
(fog)oh = (fog) h(x) = (fog) (x + 4)
= 4(x + 4)2 = 4(x2 + 8x+16)
= 4x2 + 32x + 64 ………….. (1)
RHS = fo(goh) goh = g(h(x)) = g(x + 4)
= 2(x + 4) = (2x + 8)
fo(goh) = f(goh) = f(2x + 8) = (2x + 8)2
= 4x2 + 32x + 64 ……………… (2)
(1) = (2)
LHS = RHS
∴ (fog)oh = fo(goh) It is proved.
(fog)oh = fo(goh)
LHS = (fog)oh
fog = f(g(x)) = f(x2) = x2 – 4
(fog)oh = (fog)(3x – 5) = (3x – 5)2 – 4
= 9x2 – 30x + 25 -4
= 9x2 – 30x + 21 ………….. (1)
∴ RHS = fo(goh)
(goh) = g(h(x)) = g(3x – 5) = (3x – 5)2
= 9x2 – 30x + 25
fo(goh) = f(9x2 – 30 x + 25)
= 9x2 – 30x + 25 – 4
= 9x2 – 30x + 21 …………… (2)
(1) = (2)
LHS = RHS
∴ (fog)oh = fo(goh)
It is proved.
Answer Key:
The linear equation is f(x) = ax + b
f(-1) = 3
a(-1) + b = 3
-a + b = 3 ….(1)
f(0) = -1
a(0) + b = -1
0 + b = -1
b = -1
Substitute the value of b = -1 in (1)
-a – 1 = 3
-a = 3 + 1
-a = 4
a = -4
∴ The linear equation is -4(x) -1 = -4x – 1 (or) – (4x + 1)
Answer Key:
C(at1) = 3a(t1)
C(bt2) = 3 b(t2)
C(at1 + bt2) = 3 [at1 + bt2] = 3at1 + 3bt2
= a(3t1) + b(3t2) = a[C(t1) + b(Ct2)]
∴ Superposition principle is satisfied.
Hence C(t) = 3t is linear function.
0 Comments:
Post a Comment