12th Business Mathematics and Statistics - Book Back Answers - Chapter 4 - English Medium Guides

 



 


    Plus Two / 12th Business Mathematics and Statistics - Book Back Answers - Chapter 4 - English Medium

    Tamil Nadu Board 12th Standard Business Mathematics and Statistics - Chapter 4: Book Back Answers and Solutions

        This post covers the book back answers and solutions for Chapter 4 – Business Mathematics and Statistics from the Tamil Nadu State Board 12th Standard Business Mathematics and Statistics textbook. These detailed answers have been carefully prepared by our expert teachers at KalviTips.com.

        We have explained each answer in a simple, easy-to-understand format, highlighting important points step by step under the relevant subtopics. Students are advised to read and memorize these subtopics thoroughly. Once you understand the main concepts, you’ll be able to connect other related points with real-life examples and confidently present them in your tests and exams.

        By going through this material, you’ll gain a strong understanding of Business Mathematics and Statistics  Chapter 4 along with the corresponding book back questions and answers (PDF format).

    Question Types Covered:

    • 1 Mark Questions: Choose the correct answer, Fill in the blanks, Identify the correct statement, Match the following 
    • 2 Mark Questions: Answer briefly 
    • 3, 4, and 5 Mark Questions: Answer in detail

    All answers are presented in a clear and student-friendly manner, focusing on key points to help you score full marks.

    All the best, Class 12 students! Prepare well and aim for top scores. Thank you!

    Chapter 4:


    I. Multiple Choice Questions

    1. The degree of the differential equation d4ydx4-(d2ydx2)4+dydx=3
    (a) 1 
    (b) 2 
    (c) 3 
    (d) 4
    Answer Key:
    (a) 1
     
    2. The order and degree of the differential equation d2ydx2=dydx+5 are respectively
    (a) 2 and 3 
    (b) 3 and 2
    (c) 2 and 1 
    (d) 2 and 2
    Answer Key:
    (c) 2 and 1
     
    3. The order and degree of the differential equation(d2ydx2)32 - (dydx) -4=0 are respectively.
    (a) 2 and 6 
    (b) 3 and 6
    (c) 1 and 4 
    (d) 2 and 4
    Answer Key:
    (a) 2 and 6
     
    4. The differential equation (dydx)3 + 2y12 =x is
    (a) of order 2 and degree 1
    (b) of order 1 and degree 3
    (c) of order 1 and degree 6
    (d) of order 1 and degree 2
    Answer Key:
    (b) of order 1 and degree 3
     
    5. The differential equation formed by eliminating a and b from y = aex + be-x is
    (a) 
    d2ydx2 -y =0
    (b) d2ydx2-dydx=0
    (c) d2ydx2=0 
    (d) 
    d2ydx2-x=0
    Answer Key:
    (a) d2ydx2 -y =0
     
    6. If y = cx + c − c3 then its differential equation is
    (a) y = x
    dydx+dydx-(dydx)3
    (b) y+(dydx)= xdydx-dydx
    (c) dydx+y=(dydx)-x dydx
    (d) d3ydx3=0
    Answer Key:
    (a) y = xdydx+dydx-(dydx)3
     
    7. The integrating factor of the differential equation dydx+ Px = Q is
    (a) e pdx
    (b) 
     pdx
    (c)  pdy
    (d) e pdy
    Answer Key:
    (d) e pdy
     
    8. The complementary function of (D2 + 4)y = e2x is
    (a) (Ax + B)
    e2x
    (b) (Ax + B)e-2x
    (c) Acos2x + Bsin2x
    (d) Ae
    -2x + Be2x

    Answer Key:
    (c) Acos2x + Bsin2x
     
    9. The differential equation of y = mx + c is (m and c are arbitrary constants)
    (a) 
    d2ydx2 = 0
    (b) y = dydx+c
    (c) xdy + ydx = 0 
    (d) ydx − xdy = 0
    Answer Key:
    (a) d2ydx2 = 0
     
    10. The particular integral of the differential equation is d2ydx2 - 8dydx + 16y = 2e4x
    (a) x2e4x2!
    (b) e4x2!
    (c) 
    x2e4x
    (d) xe4x
    Answer Key:
    (c) x2e4x
     
    11. Solution of dydx + Px = 0
    (a) x = ce
    py
    (b) x = ce-py
    (c) x = py + c 
    (d) x = cy
    Answer Key:
    (b) x = ce-py
     
    12. If sec2 x is an integrating factor of the differential equation dyd+ Py = Q then P =
    (a) 2tan x 
    (b) sec x
    (c) cos
    2 x 
    (d) tan
    2 x
    Answer Key:
    (a) 2tan x 
     
    13. The integrating factor of x dyd− y = x2 is
    (a) -1x
    (b) 1x
    (c) log x 
    (d) x
    Answer Key:
    (b) 1x
     
    14. The solution of the differential equation dyd+ Py = Q where P and Q are the
    function of x is

    (a) y = Qepdxdx+c
    (b) 
    y = Qe-∫pdxdx+c
    (c) yepdQepdxdx+c
    (d) yepd= ∫Qe-∫pdxdx+c
    Answer Key:
    (c) yepdQepdxdx+c
     
    15. The differential equation formed by eliminating A and B from y = e-2x (Acos x + Bsin x)is
    (a) 
    y2 − 4y1 + 5 = 0
    (b) 
    y2+ 4y – 5 = 0
    (c) 
    y2 − 4y1 − 5 = 0
    (d) 
    y+ 4y1 + 5 = 0
    Answer Key:
    (d) y+ 4y1 + 5 = 0
     
    16. The particular integral of the differential equation f (D) y = eax where f(D) = (D − a)2
    (a) x22
    eax
    (b) x
    eax
    (c) x2eax
    (d) x
    2eax
    Answer Key:
    (a) x22eax
     
    17. The differential equation of x2 + y2 = a2
    (a) xdy+ydx=0 
    (b) ydx–xdy=0
    (c) xdx–ydx=0 
    (d) xdx+ydy=0
    Answer Key:
    (d) xdx+ydy=0
     
    18. The complementary function of d2ydx2 = 0 is
    (a) A + B
    ex
    (b) (A + B)ex
    (c) (Ax + B)ex
    (d) Aex + B
    Answer Key:
    (a) A + Bex
     
    19. The P.I of (3D2 + D − 14)y =13e2x is
    (a) 
    x2e2x
    (b) xe2x
    (c) x22e2x
    (d) 13xe2x
    Answer Key:
    (b) xe2x
     
    20. The general solution of the differential equation dyd= cos x is
    (a) y = sin x +1 (b) y = sin x - 2
    (c) y = cos x + c, c is an arbitrary constant
    (d) y = sin x + c, c is an arbitrary constant
    Answer Key:
    (d) y = sin x + c, c is an arbitrary constant
     
     21. A homogeneous differential equation of the form dydx = f(yx)can be solved by making substitution,
    (a) y = v x 
    (b) v = y x
    (c) x = v y 
    (d) x = v
    Answer Key:
    (a) y = v x 
     
    22. A homogeneous differential equation of the form dydx = f(xy)can be solved by making substitution,
    (a) x = v y 
    (b) y = v x
    (c) y = v 
    (d) x = v
    Answer Key:
    (a) x = v y
      
    23. The variable separable form of dydx= y(x-y)x(x+y) by taking y = vx and dydx = V+xdvdx is
    (a) 2v21+vdv=dxx
    (b) 2v21+vdv=-dxx
    (c) 2v21-vdv=-dxx
    (d) 1+v2v2dv=-dxx
    Answer Key:
    (d) 1+v2v2dv=-dxx 
     
    24. Which of the following is the homogeneous differential equation?
    (a) (3x − 5) dx = (4y −1) dy
    (b) xy dx − (x
    3 + y3 ) dy = 0
    (c) y
    2 dx + (x2 − xy − y2 ) dy = 0
    (d) (x
    2 + y) dx =(y2 + x) dy
    Answer Key:
    (c) y2 dx + (x2 − xy − y2 ) dy = 0  
     
    25. The solution of the differential equation dydx = yx+(yx)(yx) is
    (a) f
    (yx)=kx
    (b) x f(yx)=k
    (c) f(yx)=ky
    (d) yf(yx)=k
    Answer Key: 
    (a) f(yx)=kx 
     

    II. Short answer questions

    12th BM

    III. Long answer questions

    12th BM


     


     

     

     

     






    0 Comments:

    Post a Comment

    Recent Posts

    Total Pageviews

    Code

    Blog Archive